SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Extended search

L4X0:0345 7524
 

Search: L4X0:0345 7524 > Liedberg Bo Professor > Nanoplasmonic Sensi...

Nanoplasmonic Sensing using Metal Nanoparticles

Martinsson, Erik, 1983- (author)
Linköpings universitet,Molekylär fysik,Tekniska högskolan
Aili, Daniel, Associate Professor (thesis advisor)
Linköpings universitet,Molekylär fysik,Tekniska högskolan
Liedberg, Bo, Professor (thesis advisor)
Linköpings universitet,Molekylär fysik,Tekniska högskolan
show more...
Enander, Karin, Associate Professor (thesis advisor)
Linköpings universitet,Molekylär fysik,Tekniska högskolan
Dostálek, Jakub, Ph.D. (opponent)
AIT-Austrian Institute of Technology, Vienna, Austria
show less...
 (creator_code:org_t)
ISBN 9789175192239
2014-11-06
English 76 s.
Series: Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1624
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • In our modern society, we are surrounded by numerous sensors, constantly feeding us information about our physical environment. From small, wearable sensors that monitor our physiological status to large satellites orbiting around the earth, detecting global changes. Although, the performance of these sensors have been significantly improved during the last decades there is still a demand for faster and more reliable sensing systems with improved sensitivity and selectivity. The rapid progress in nanofabrication techniques has made a profound impact for the development of small, novel sensors that enables miniaturization and integration. A specific area where nanostructures are especially attractive is biochemical sensing, where the exceptional properties of nanomaterials can be utilized in order to detect and analyze biomolecular interactions. The focus of this thesis is to investigate plasmonic nanoparticles composed of gold or silver and optimize their performance as signal transducers in optical biosensors. Metal nanoparticles exhibit unique optical properties due to excitation of localized surface plasmons, which makes them highly sensitive probes for detecting small, local changes in their surrounding environment, for instance the binding of a biomolecule to the nanoparticle surface. This is the basic principle behind nanoplasmonic sensing based on refractometric detection, a sensing scheme that offers real-time and label-free detection of molecular interactions. This thesis shows that the sensitivity for detecting local refractive index changes is highly dependent on the geometry of the metal nanoparticles, their interaction with neighboring particles and their chemical composition and functionalization. An increased knowledge about how these parameters affects the sensitivity is essential when developing nanoplasmonic sensing devices with high performance based on metal nanoparticles. 

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Keyword

Nanoparticles
sensing
biosensors
refractive index sensing
plasmonics
nanoplasmonics

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view